
FileCloud Server
23.253

FileCloud Developer Guide

2 January, 2026

FileCloud Server 23.253 FileCloud Developer Guide

Table of Contents

FileCloud HTTP API .. 1

HTTP Basics ... 1

How API authentication works .. 1

Tips for using the API ... 2

In this section:... 3

PHP Sample for FileCloud API... 4

PHP Sample For Multiple Chunk Upload... 7

PHP Sample To Upload File ... 10

Curl/Bash Sample: File Upload and Download ... 13

PowerShell Samples for FileCloud API ... 15

Python Sample for FileCloud API... 18

FileCloud API - "Hello World" Exercise... 20

7.1 COMMAND: LOGINGUEST ... 20

7.2 COMMAND: ADMINLOGIN... 22

FileCloud API - Authentication Exercise .. 24

FileCloud API - Logging Exercise ... 26

FileCloud API - Requirements .. 27

Meet the Requirements .. 27

FileCloud API - XML Responses .. 28

2

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud HTTP API
FileCloud HTTP API allows clients such as web browsers and mobile devices to
programmatically connect and access FileCloud instances running on your personal computer or
any other device.

 FileCloud runs on Apache server on both Windows and Linux Platforms.

 This server handles incoming HTTP calls, transforms them into internal System Messages and
sends them to the appropriate internal services.

HTTP Basics
HTTP Basics

HTTP is the fundamental protocol of the World Wide Web. HTTP is a connectionless request response
protocol, meaning there is no concept of a persistent connection between a series of requests.

REQUEST AND RESPONSE

An HTTP request is a message sent from the client to the server. The server sends back a response.
The request and response might contain content called the body. In addition, the response always
contains a numeric response code, which lets us know if the request was successful. It gives more
detailed information about what exactly happened (e.g. the cause of failure).

METHODS

HTTP supports several request methods, which help the server know how to handle the request. The
HTTP methods for our purposes are:
GET: Used to retrieve a resource (such as a web page or image) from a URL
POST: Used to send data to a server (such as the content of a form) based on a URL

HEADERS

Finally, in addition to the main content of the request and response, HTTP allows additional data to be
sent in the form of headers. They can be sent with the request to the server and the response from the
server, and they can contain arbitrary text data. There are many standard headers, and the connection
API contains methods for easily accessing some of the most common ones.

How API authentication works
How API authentication works

FileCloud records all API calls in the audit log, therefore, authentication cannot be done with an API
token.

FileCloud HTTP API – 1

FileCloud Server 23.253 FileCloud Developer Guide

When you log in with loginguest or adminlogin and provide the correct password, the server creates a
new session, and returns the authentication parameters in cookies which are included in all
subsequent calls. The cookies allow the server to link your API call to the existing session.

More details about cookies can be seen in these examples:
Curl/Bash Sample: File Upload and Download (see page 13) - cookie is stored in the file ${USER}
_cookie.txt
PowerShell Sample for FileCloud API (see page 18) - cookie is stored in the variable
$LoginResponse.Headers['Set-Cookie']

Tips for using the API

Tips for using the API

To view full API documentation:
FileCloud Admin API:

 Swagger: https://fcapi-admin.filecloud.com/

FileCloud User API:

 Swagger: https://fcapi.filecloud.com/

FileCloud API:

 Swagger: https://fcapi-v1.filecloud.com/

Note: Although the API documentation allows you to view API command formats for previous
versions of FileCloud, only the API formats shown for the latest released version of FileCloud are
supported.

To see which API call and parameters were executed:

1. Execute the action in the FileCloud admin portal or user portal.

2. In the browser, open the Developer Tools using CTRL-Shift-i.

3. Check the Developer Tools to see the API call and parameters.
For example:

FileCloud HTTP API – 2

https://fcapi-admin.filecloud.com/
https://fcapi.filecloud.com/
https://fcapi-v1.filecloud.com/

FileCloud Server 23.253 FileCloud Developer Guide

In this section:

 PHP Sample for FileCloud API (see page 4)

 PHP Sample For Multiple Chunk Upload (see page 7)

 PHP Sample To Upload File (see page 10)

 Curl/Bash Sample: File Upload and Download (see page 13)

 PowerShell Samples for FileCloud API (see page 15)

 Python Sample for FileCloud API (see page 18)

 FileCloud API - "Hello World" Exercise (see page 20)

 FileCloud API - Authentication Exercise (see page 24)

 FileCloud API - Logging Exercise (see page 26)

 FileCloud API - Requirements (see page 27)

 FileCloud API - XML Responses (see page 28)

FileCloud HTTP API – 3

FileCloud Server 23.253 FileCloud Developer Guide

PHP Sample for FileCloud API

The sample for FileCloud API "loginguest" , "getfilelist" and "upload" uses PHP cURL

<?php

 function getCurlValue($filen, $mimetype = '') {
 // PHP 5.5 introduced a CurlFile object that deprecates the old @filename
syntax
 // See: https://wiki.php.net/rfc/curl-file-upload
 if (function_exists('curl_file_create')) {
 return curl_file_create(realpath($filen), $mimetype, $filen);
 }

 // Use the old style if using an older version of PHP
 $value = '@' . realpath($filen);

 return $value;
 }

$cookie_jar = tempnam('/tmp','cookie');

// OPTIONS
$username = "USER";
$password = "PASSWORD";
$serverurl = "http://URL";
$pathval = "/SHARED/fcteamfolder/HR/Policies";
$filename = 'helloworld.txt'; // name of the file to upload
$filefullpath = 'helloworld.txt'; // Full path to file to upload

//assign post data
$param = array('userid' => $username,'password' => $password);

$api = "loginguest";
$url= $serverurl."/core/".$api;

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS,$param);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
$data = curl_exec($ch);
curl_close($ch);

$xmlstr = new \SimpleXMLElement($data);
$result = $xmlstr->command->result;
if($result == 1)

Before you try this code, make sure you have installed PHP cURL,

PHP Sample for FileCloud API – 4

FileCloud Server 23.253 FileCloud Developer Guide

{
 echo "Profile Logged in Successfully";

 // getfilelist api call
 $api = "getfilelist";
 $path = $pathval;

 //assign post data
 $param = array('path' =>$path);

 $url= $serverurl."/core/".$api;
 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $param);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
 curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
 $data = curl_exec($ch);
 curl_close($ch);

 $xmlstr = new \SimpleXMLElement($data);
 $total = $xmlstr->meta->total;
 if($total == 0)
 {
 echo "</br>"."No of file's in the system";
 }
 else
 {
 echo "</br>"."Total no. of files:".$total;
 $count = 0;
 foreach ($xmlstr->entry as $file)
 {
 echo "</br>".++$count.".".$file->name;
 }
 }

 //upload api call
 $api = "upload";
 $appnamevalue = "explorer";
 $pathvalue = $pathval;
 $offset = '0';
 $complete = '1';

 $cfile = getCurlValue($filefullpath);
 $post = array('file_contents' => $cfile);

 $url= $serverurl."/core/upload?appname=explorer" . $appnamevalue .
'&path=' . $pathvalue . '&offset=0&complete='.$complete.'&filename=' . $filename;
 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $post);
 curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
 curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
 $data = curl_exec($ch);
 curl_close($ch);

PHP Sample for FileCloud API – 5

FileCloud Server 23.253 FileCloud Developer Guide

 if($data = "OK")
 {
 echo "</br>"."File uploaded Successfully";
 }
 else
 {
 echo $data;
 }
}
else
{
 echo "Error:".$xmlstr->command->message;
}
?>

PHP Sample for FileCloud API – 6

FileCloud Server 23.253 FileCloud Developer Guide

PHP Sample For Multiple Chunk Upload

<?php

 function create_upload_form_for_datachunk($data) {
 $headers = array();
 $form[] = implode("\r\n", array(
 "Content-Disposition: form-data; name=\"filedata\"; filename=\"blob\"",
 "Content-Type: application/octet-stream",
 "",
 $data
));

 // generate safe boundary
 do {
 $boundary = "---------------------" . md5(mt_rand() . microtime());
 } while (preg_grep("/{$boundary}/", $form));

 // add boundary for each parameters
 array_walk($form, function (&$part) use ($boundary) {
 $part = "--{$boundary}\r\n{$part}";
 });

 // add final boundary
 $form[] = "--{$boundary}--";
 $form[] = "";

 // set options
 $headers[] = "Content-Type: multipart/form-data; boundary={$boundary}";
 return array($headers, $form);
}

$cookie_jar = tempnam('C:\\testfolder', 'cookie');

// Input Options
$username = "testuser";
$password = "password123";
$serverurl = "https://127.0.0.1";
$pathval = "/testuser/folder";
$filename = 'sample.mp4'; // name of the file to upload
$filefullpath = 'C:\\testfolder\\'.$filename; // Full path to file to upload
//assign post data

 This sample does multi-chunked uploading.

 Before you try this code, make sure you have installed PHP cURL,

 This sample uses FileCloud APIs "loginguest" and "upload".

 This code can be used to upload large files, splitting them into 20MB chunks.

 The following sample reads a file named sample.mp4 and uploads it into FileCloud as
sample.mp4

PHP Sample For Multiple Chunk Upload – 7

FileCloud Server 23.253 FileCloud Developer Guide

$param = array('userid' => $username, 'password' => $password);

//login to the site
$api = "loginguest";
$url = $serverurl . "/core/" . $api;
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $param);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);
$data = curl_exec($ch);
curl_close($ch);
//end of login

$xmlstr = new \SimpleXMLElement($data);
$result = $xmlstr->command->result;
if ($result == 1) {
 echo "Profile Logged in Successfully";

 //upload api call
 $api = "upload";
 $appnamevalue = "explorer";
 $pathvalue = $pathval;

 //creating a single shot upload call
 $offset = 0;
 $complete = '0';
 $file_sz = filesize($filefullpath);
 $chunk_sz = 20000000; //20MB chunks

 while($offset < $file_sz) {
 if(($offset + $chunk_sz) >= $file_sz) {
 $complete = '1';
 $sz = $file_sz - $offset;
 } else {
 $sz = $chunk_sz;
 }

 $data = file_get_contents($filefullpath, FALSE, NULL, $offset, $sz);
 $tt = strlen($data);
 list($headers, $form) = create_upload_form_for_datachunk($data);

 $url= $serverurl."/core/upload?appname=explorer" . '&path=' . $pathval .
'&offset=' . $offset . '&complete='
 . $complete. '&filename=' . $filename;

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, implode("\r\n", $form));
 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
 curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);

PHP Sample For Multiple Chunk Upload – 8

FileCloud Server 23.253 FileCloud Developer Guide

 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);
 $result = curl_exec($ch);
 curl_close($ch);

 if ($result != "OK") {
 echo "Failed to upload\n";
 exit;
 }

 $offset = $offset + $chunk_sz;
 }

 if ($result == "OK") {
 echo "</br>" . "File uploaded Successfully";
 } else {
 echo $result;
 }
} else {
 echo "Error:" . $xmlstr->command->message;
}

PHP Sample For Multiple Chunk Upload – 9

FileCloud Server 23.253 FileCloud Developer Guide

PHP Sample To Upload File

<?php

function create_upload_form_for_datachunk($data) {
 $headers = array();
 $form[] = implode("\r\n", array(
 "Content-Disposition: form-data; name=\"filedata\"; filename=\"blob\"",
 "Content-Type: application/octet-stream",
 "",
 $data,
 "blob"
));

 // generate safe boundary
 do {
 $boundary = "---------------------" . md5(mt_rand() . microtime());
 } while (preg_grep("/{$boundary}/", $form));

 // add boundary for each parameters
 array_walk($form, function (&$part) use ($boundary) {
 $part = "--{$boundary}\r\n{$part}";
 });

 // add final boundary
 $form[] = "--{$boundary}--";
 $form[] = "";

 // set options
 $headers[] = "Content-Type: multipart/form-data; boundary={$boundary}";
 return array($headers, $form);
}

$cookie_jar = tempnam('C:\\testfolder', 'cookie');

// Input Options
$username = "testuser";
$password = "password123";
$serverurl = "http://127.0.0.1";

 Before you try this code, make sure you have installed PHP cURL,

 This sample uses FileCloud APIs "loginguest" and "upload"

 This code creates custom upload form doing a single shot upload

 This can be modified for multiple uploads as well

 The code can upload files with same name as input or a custom name.

 The following sample reads a file named helloworld.txt and uploads into FileCloud as
hellothere.txt

PHP Sample To Upload File – 10

FileCloud Server 23.253 FileCloud Developer Guide

$pathval = "/testuser/folder";
$filename = 'hellothere.txt'; // name of the file to upload
$filefullpath = 'C:\\testfolder\\helloworld.txt'; // Full path to file to upload
//assign post data
$param = array('userid' => $username, 'password' => $password);

//login to the site
$api = "loginguest";
$url = $serverurl . "/core/" . $api;
$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $param);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
$data = curl_exec($ch);
curl_close($ch);
//end of login

$xmlstr = new \SimpleXMLElement($data);
$result = $xmlstr->command->result;
if ($result == 1) {
 echo "Profile Logged in Successfully";

 //upload api call
 $api = "upload";
 $appnamevalue = "explorer";
 $pathvalue = $pathval;

 //creating a single shot upload call
 $offset = '0';
 $complete = '1';
 $filedata = file_get_contents($filefullpath);
 list($headers, $form) = create_upload_form_for_datachunk($filedata);

 //make the upload call
 $url = $serverurl . "/core/upload?appname=explorer" . $appnamevalue . '&path=' .
$pathvalue . '&offset=0&complete=' . $complete . '&filename=' . $filename;
 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, implode("\r\n", $form));
 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($ch, CURLOPT_COOKIEJAR, $cookie_jar);
 curl_setopt($ch, CURLOPT_COOKIEFILE, $cookie_jar);
 $result = curl_exec($ch);
 curl_close($ch);
 //end of upload call

 if ($result == "OK") {
 echo "</br>" . "File uploaded Successfully";
 } else {
 echo $result;
 }
} else {
 echo "Error:" . $xmlstr->command->message;

PHP Sample To Upload File – 11

FileCloud Server 23.253 FileCloud Developer Guide

}

PHP Sample To Upload File – 12

FileCloud Server 23.253 FileCloud Developer Guide

Curl/Bash Sample: File Upload and Download
This example shows how to use the FileCloud API with Curl/Bash to create a folder and upload a file.

#!/bin/bash
Note: this is an example script, it does not have any error handling.

URL='https://filecloud.example.com'
USER=user1
PASSWORD=password4user

cookieFile=${USER}_cookie.txt
timestamp=`date +%Y-%m-%d_%H-%M-%S`

user login
#-----------

echo ">>> loggin in as user $USER"

endpoint='/core/loginguest'
urlParams='time='`date +%s` # optional parameter, simplifies troubleshooting in
the server log

postData=""
postData+='userid='$USER
postData+='&password='$PASSWORD

curl "${URL}${endpoint}?$urlParams" --cookie-jar $cookieFile --data-raw "$postData"
--compressed
echo
echo "<<<"

create folder
#--------------

set a name for the new folder
FOLDER="newExampleFolder_$timestamp"

echo ">>> creating folder $FOLDER for $USER:"

endpoint='/core/createfolder'
urlParams='time='`date +%s` # optional parameter, simplifies troubleshooting in
the server log

postData=""
postData+="name=$FOLDER"
postData+="&path=/$USER"

curl "${URL}${endpoint}?$urlParams" --cookie $cookieFile --data-raw "$postData" --
compressed
echo
echo "<<<"

upload file to the new folder
#------------------------------

Curl/Bash Sample: File Upload and Download – 13

FileCloud Server 23.253 FileCloud Developer Guide

UPLOADFILE="newExampleFile_$timestamp.txt"
UPLOADPATH="/${USER}/${FOLDER}"

create a sample file for upload
date > $UPLOADFILE

echo ">>> upload file $UPLOADFILE to folder $FOLDER for $USER"

endpoint='/upload'

urlParams='time='`date +%s` # optional parameter, simplifies troubleshooting in
the server log
urlParams+='&appname=explorer'
urlParams+="&path=$UPLOADPATH"
urlParams+='&offset=0'
urlParams+='&complete=1'
urlParams+="&filename=$UPLOADFILE"

curl -k -X POST -F 'image=@'$UPLOADFILE "${URL}${endpoint}?$urlParams" --cookie
$cookieFile

download the file
#------------------------------

filepath="/${USER}/${FOLDER}/$UPLOADFILE"
filename=$UPLOADFILE

echo ">>> downloading file $filepath"

endpoint='/core/downloadfile'
urlParams='time='`date +%s` # optional parameter, simplifies troubleshooting in
the server log

postData=""
postData+="filepath=$filepath"
postData+="&filename=$filename"

curl "${URL}${endpoint}?$urlParams" --cookie $cookieFile --data-raw "$postData" --
output ${filename}.downloaded
echo
echo "<<<"

Curl/Bash Sample: File Upload and Download – 14

FileCloud Server 23.253 FileCloud Developer Guide

PowerShell Samples for FileCloud API
FileCloud User Portal: get file listing

$baseUrl = "https://fctest.ddns.net"
$userName="user1"
$userPassword="password"

$Uri = $baseUrl + "/core/"

avoid CSFR checks, see https://www.filecloud.com/supportdocs/cloud/csrf-token-api-
changes-13502114.html
$Headers = @{
 "User-Agent"="Powershell"
}`

$Body = @{ op = 'loginguest'
 userid = $userName
 password = $userPassword }

echo ">>> trying to login ..."
$LoginResponse = Invoke-WebRequest -Method Post -Uri $Uri -Body $Body -SessionVariable
WebSession -Headers $Headers

echo "====== login response:
=="
$LoginResponse
echo
"==="

$op="getfilelist"
$path = "/" + $userName
$Body = @{
 op = $op
 path = $path
}
echo ">>> calling" $op "..."
$Response = Invoke-WebRequest -Method Post -Uri $Uri -WebSession $WebSession -Body
$Body -Headers $Headers
echo "<<< done."

echo "====== response: =="
$Response
$Response.Content
echo "==="

FileCloud Admin Portal: get license information

$baseUrl = "https://fctest.ddns.net"
$adminPassword="password"

PowerShell Samples for FileCloud API – 15

FileCloud Server 23.253 FileCloud Developer Guide

$Uri = $baseUrl + "/admin/"

avoid CSFR checks, see https://www.filecloud.com/supportdocs/cloud/csrf-token-api-
changes-13502114.html
$Headers = @{
 "User-Agent"="Powershell"
} `

$Body = @{ op = 'adminlogin'
 adminuser = 'admin'
 adminpassword = $adminPassword }

echo ">>> trying to login as admin..."
$LoginResponse = Invoke-WebRequest -Method Post -Uri $Uri -Body $Body -SessionVariable
WebSession -Headers $Headers
echo "<<< done."
echo "====== login response:
=="
$LoginResponse
echo
"==="

$op="getlicense"
$Body = @{ op = $op }
echo ">>> calling" $op "..."
$Response = Invoke-WebRequest -Method Post -Uri $Uri -Body $Body -WebSession
$WebSession -Headers $Headers
echo "<<< done."
echo "====== response: =="
$Response
$Response.Content
echo
"==="

FileCloud Admin Portal (superadmin): get site list

$baseUrl = "https://fctest.ddns.net"
$superAdminPassword='password'

$Uri = $baseUrl + "/admin/"

avoid CSFR checks, see https://www.filecloud.com/supportdocs/cloud/csrf-token-api-
changes-13502114.html
$Headers = @{
 "User-Agent"="Powershell"
}`

$Body = @{ op = 'superadminlogin'
 superadminuser = 'superadmin'
 superadminpassword = $superAdminPassword }

echo ">>> trying to login as superadmin..."
$LoginResponse = Invoke-WebRequest -Method Post -Uri $Uri -Body $Body -SessionVariable
WebSession -Headers $Headers

PowerShell Samples for FileCloud API – 16

FileCloud Server 23.253 FileCloud Developer Guide

echo "====== login response:
=="
$LoginResponse
echo
"==="

$op="superadmingetallsites"
$Body = @{ op = $op }
echo ">>> calling" $op "..."
$Response = Invoke-WebRequest -Method Post -Uri $Uri -Body $Body -WebSession
$WebSession -Headers $Headers
echo "<<< done."
echo "====== response: =="
$Response
echo $Response.Content
echo
"==="

PowerShell Samples for FileCloud API – 17

FileCloud Server 23.253 FileCloud Developer Guide

Python Sample for FileCloud API

The sample for FileCloud API "loginguest" and "upload" uses the python requests module.

#!/usr/bin/env python3
import requests

Path to file to be uploaded
PathToFile="D:\\Developement\\python\\filecloud upload\\file_upload.txt" #To be
defined

Filecloud headers.
Headers = {'Accept': 'application/json'}

Filecloud creds
Creds = {'userid': 'username', 'password': 'password'} #To be defined

##Filecloud server API endpoints
ServerURL='https://filecloud_server_url/' #To be defined
LoginEndPoint = 'core/loginguest'
UploadEndPoint = 'core/upload'

Specify user path inside Filecloud.
FilecloudPath="/username" #To be defined

Upload API params.
UploadApiParams = {'appname': 'explorer', 'path': FilecloudPath, 'offset': 0}

if __name__ == '__main__':
 s = requests.session()
 FileToUpload={'file': (open(PathToFile,'rb'))}
 LoginCall=s.post(ServerURL+LoginEndPoint, data=Creds, headers=Headers).json()
 if LoginCall['command'][0]['result'] == 1:
 print('Login successfull, processing with File upload ...')
 UploadCall=s.post(ServerURL+UploadEndPoint, params=UploadApiParams, files =
 FileToUpload, cookies = s.cookies)
 if UploadCall.text == 'OK':
 print('Upload successfull.')
 else:
 print('Upload failed.')

 else:
 print('login failed.')

Before you try this code, make sure you have installed the requests module.

Python Sample for FileCloud API – 18

FileCloud Server 23.253 FileCloud Developer Guide

Python Sample for FileCloud API – 19

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud API - "Hello World" Exercise

 "Hello World" for FileCloud is not exactly the program that prints Hello World.

 We will see how to login and authenticate into FileCloud in a default authentication setting.

 These calls are fundamental to understand the XML messages that are used to communicate
between the FileCloud server and client.

Authentication is a one step process.

 The loginguest command is issued with account name and password.

 When authentication is complete and successful, the FileCloud HTTP server creates a cookie
and returns the cookie value to the client through the HTTP header.

7.1 COMMAND: LOGINGUEST

loginguest command accepts the account name and password and attempts to login into the profile.
The URL follows the standard format as we discussed above.

When applied for loginguest call, the above URL takes the form.

http://host:port/core/loginguest1

The input parameters (see table below) userid and password must be passed as name/value pairs
from client to FileCloud HTTP server as a part of HTML body through the HTTP POST method.
From the FileCloud Client, issue an HTTP POST command with the above URL when your FileCloud
Development Instance is running.

 When doing HTTP POST please ensure that the content-type is set correctly to "application/x-www-
form-urlencoded"

Also, if you are connecting as an agent, additional parameters such as RMC details of the agent might
be needed. To avoid that, we recommend spoofing the User-Agent and passing in any web browser
User Agent String.

HTTP://HOST:PORT/CORE/OPERATION {? OPTIONAL PARAMS }

1. http://hostport

FileCloud API - "Hello World" Exercise – 20

http://hostport
http://hostport

FileCloud Server 23.253 FileCloud Developer Guide

Header Parameter Value

content-type application/x-www-form-urlencoded

User-Agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/56.0.2924.87 Safari/537.36

FileCloud HTTP server will return an XML result in the following format.

<commands>
 <command>
 <type>loginguest</type>
 <result>1</result>
 <message> </message>
 </command>
</commands>

In the above XML response, RESULT 1 indicates that the profile was logged in successfully. As an
additional help, use the FileCloud Logs to follow the communication between your client and FileCloud
HTTP server.

Input HTTP, Method: POST

PARAMETER Required DATA TYPE DESCRIPTION

userid Yes String account name

password Yes String Clear Text password

Output

PARAMETER Description

type Name of the call. Possible value is "loginguest"

result Returns 1 if success, 0 is failed.

However, a RESULT 0 indicates the loginguest failed. Most likely cause will be password is
not correct. password

FileCloud API - "Hello World" Exercise – 21

FileCloud Server 23.253 FileCloud Developer Guide

PARAMETER Description

message Returns any error message generated in the call. 8 FILECLOUD

7.2 COMMAND: ADMINLOGIN

adminlogin command accepts the admin name and admin password and attempts to login into the
admin site. The URL follows the standard format as we discussed above.

When applied for adminlogin call, the above URL takes the form.

http://host:port/admin2/?op=adminlogin

The input parameters (see table below) op, adminuser and adminpassword must be passed as name/
value pairs from client to FileCloud HTTP server as a part of HTML body through the HTTP POST
method.
From the FileCloud Client, issue an HTTP POST command with the above URL when your FileCloud
Development Instance is running.

 When doing HTTP POST please ensure that the content-type is set correctly to "application/x-www-
form-urlencoded"

We recommend spoofing the User-Agent and passing in any web browser User Agent String.

Header Parameter Value

content-type application/x-www-form-urlencoded

User-Agent Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/56.0.2924.87 Safari/537.36

FileCloud HTTP server will return an XML result in the following format.

HTTP://HOST:PORT/ADMIN/ (see page 20)?OP=OPERATION { &OPTIONAL PARAMS }

2. http://hostport/

FileCloud API - "Hello World" Exercise – 22

http://hostport/
http://hostport/

FileCloud Server 23.253 FileCloud Developer Guide

<commands>
 <command>
 <type>adminlogin</type>
 <result>1</result>
 <message> </message>
 </command>
</commands>

In the above XML response, RESULT 1 indicates that the profile was logged in successfully. As an
additional help, use the FileCloud Logs to follow the communication between your client and FileCloud
HTTP server.

Input HTTP, Method: POST

PARAMETER Required DATA TYPE DESCRIPTION

op Yes String Operation

adminuser Yes String Admin user name

adminpassword Yes String Clear Text password

Output

PARAMETER Description

type Name of the call. Possible value is "adminlogin"

result Returns 1 if success, 0 is failed.

However, a RESULT 0 indicates the adminlogin failed.

message Returns any error message generated in the call.

FileCloud API - "Hello World" Exercise – 23

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud API - Authentication Exercise

 After you have successfully created a new user and logged in to FileCloud User Site, use this
exercise to call the getauthenticationinfo operation.

 You must use the following URL: http://www.yourdomain.com/core/getauthenticationinfo
(where www.yourdomain.com is your URL)

 For the purpose of this exercise, Authentication Type must be set to DEFAULT Enabling
Default Authentication

 HTTP (GET/POST) response from FileCloud Server will always be in a XML format. FileCloud
web server will return the following XML response.

<authenticationinfo>
<info>
<profile>satad</profile>
<displayname>satad</displayname>
<peerid>satad</peerid>
<authenticated>1</authenticated>
<isguestauthenticated>0</isguestauthenticated>
<hash>sha1</hash>
<guesthash>sha1</guesthash>
<guesthashurl/>
<isremote>0</isremote>
<reasoncode>0</reasoncode>
<OS>TONIDO_CLOUD</OS>

In FileCloud, the first fundamental requirement is the ability to identify the FileCloud user uniquely.

1. The first time you install FileCloud Server and log in to the Admin Portal, you will have to
Create a new FileCloud user account.

2. After account creation, you login into the User Portal with that account using the password you

created. Log in to the User Portal
3. When you login correctly, an authentication cookie is sent back to the browser which is used for

all subsequent HTTP calls.

4. The client has to pass this cookie back to the server with all the calls going forward to
successfully communicate with the FileCloud HTTP server.

5. Usually, passing of cookies between client and server is handled automatically in the browser.

6. However, if your client does not handle this communication automatically you have to capture
and pass this cookie through the HTTP header from the client to the server.

FileCloud API - Authentication Exercise – 24

FileCloud Server 23.253 FileCloud Developer Guide

<authtype>DEFAULT</authtype>
</info>
</authenticationinfo>

Most of the XML elements above are self explanatory, however do not worry if some properties
are not clear. We will dive deep as we go through this document. Let us try to analyze the URL
some more. The FileCloud HTTP server expects URL to be of a certain form.

The "CORE" in the above URL refers to FileCloud User Site that provides programmable APIs,
manages and provides HTTP connectivity. In our first example, we were using
getauthenticationinfo as the operation that gets the basic authentication detail such as profile id,
display name, authentication type etc of the profile logged into FileCloud server. The Optional
Parameters can be used to pass parameters from client to server. They can either be passed via
HTTP Get URL parameters or as POST parameters.

HTTP://HOST:PORT/CORE/OPERATION3{? OPTIONAL PARAMS VIA GET OR POST}

3. HTTP://HOSTPORT

FileCloud API - Authentication Exercise – 25

http://HOSTPORT
http://HOSTPORT

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud API - Logging Exercise

 FileCloud logging offers a simple but powerful means to follow and debug the communication
between your client and FileCloud HTTP server.

 Logs files are stored under the SCRATCH folder under Apache web server root folder.

 To view the log file, you can use note pad or a Log file monitoring tool such as Bare Tail by Bare
Metal Soft in Windows. http://www.baremetalsoft.com/baretail/.

As an additional activity, repeat the Authentication exercise and follow the FileCloud logs.

 FileCloud Logging

 Authentication Exercise (see page 24)

FileCloud API - Logging Exercise – 26

http://www.baremetalsoft.com/baretail/

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud API - Requirements

If you want to work with the FileCloud API, you will need to set up your test environment.

 You must have an instance of FileCloud Server running on a Windows or Linux server

Meet the Requirements
Before you can proceed with the practice exercises or develop a solution to work with the FileCloud
API, you must complete the items in the Requirements checklist.

Requirements For more information

FileCloud Server license Request a free trial or buy FileCloud license from http://
www.filecloud.com4

Read the release notes Release Notes

Read the upgrade notes if
applicable

 FileCloud Server Upgrade Notes

Install FileCloud Server Install FileCloud Server

Verify you can log in to the
FileCloud Admin Portal

 Log in to the Admin Portal

Verify you can log in to the
FileCloud User Portal

 Access the User Portal

4. http://www.filecloud.com/

FileCloud API - Requirements – 27

http://www.filecloud.com/
http://www.filecloud.com/

FileCloud Server 23.253 FileCloud Developer Guide

FileCloud API - XML Responses

 XML response received from FileCloud HTTP server follows a standard pattern with items,
meta and item element.

The following is the standard XML pattern received from FileCloud server.

<items>
 <meta>
 <metaelement1>[Meta Element 1 value]
 </metaelement1> <metaelement2>[Meta Element 2 value]
 </metaelement2>
</meta>
<item>
 <itemdetail1>[Item detail 1 value]<itemdetail1>
 <itemdetail2>[Item detail 1 value]<itemdetail2>
 <itemdetail3>[Item detail 1 value]<itemdetail3>
</item>
</items>

The items and item element will be renamed appropriately for each XML response received as shown
below in the samples. On the other hand, meta element is optional. Following are some of the sample
XML response received.

In the loginguest response below, the items and item element are replaced with commands and
command element respectively. The command element has type, result and message elements as
itemdetail.

<commands>
 <command>
 <type>loginguese</type>
 <result>1</result>
 <message> </message>
 </command>
</commands>

In the getfilelist response below, the items and item element are replaced with entries and entry
element respectively. The entry element has path, dirpath, name, ext, isroot, type, fullfilename, size,
modified, favoritelistid, favoriteid, order, fullsize, modifiedepoch elements as itemdetail. Note that, the
getfilelist also returns the optional meta element with parentpath and total entry elements.

FileCloud API - XML Responses – 28

FileCloud Server 23.253 FileCloud Developer Guide

<entries>
 <meta>
 <parentpath>/apptester</parentpath>
 <total>133</total>
 <realpath>/apptester/Docs</realpath>
 <canupload>1</canupload>
 <isshareable>1</isshareable>
 <candownload>1</candownload>
 <cansetacls>0</cansetacls>
 <showshareoption>0</showshareoption>
 <teamfolder>0</teamfolder>
 <result>1</result>
 <message/>
 <defaultfile/>
 </meta>

 <entry>
 <path>/apptester/Docs/CA</path>
 <dirpath>/apptester/Docs/</dirpath>
 <name>CA</name>
 <ext/>
 <fullsize>0</fullsize>
 <modified>Dec 10, 2017 8:26 AM</modified>
 <type>dir</type>
 <fullfilename>/apptester/Docs/CA</fullfilename>
 <size/>
 <modifiedepoch>1512894360</modifiedepoch>
 <modifiediso>2017-12-10T08:26:00+0000</modifiediso>
 <isroot>0</isroot>
 <isshareable>1</isshareable>
 <issyncable>0</issyncable>
 <isshared/>
 <canrename>1</canrename>
 <showprev>0</showprev>
 <canfavorite>1</canfavorite>
 <canupload>1</canupload>
 <candownload>1</candownload>
 <favoritelistid>0</favoritelistid>
 <favoriteid>0</favoriteid>
 <order>0</order>
 <showquickedit>1</showquickedit>
 <showlockunlock>1</showlockunlock>
 <showshareoption>0</showshareoption>
 <cansetacls>0</cansetacls>
 <locked>0</locked>
 </entry>
</entries>

FileCloud API - XML Responses – 29

	FileCloud HTTP API
	HTTP Basics
	How API authentication works
	Tips for using the API
	In this section:

	PHP Sample for FileCloud API
	PHP Sample For Multiple Chunk Upload
	PHP Sample To Upload File
	Curl/Bash Sample: File Upload and Download
	PowerShell Samples for FileCloud API
	Python Sample for FileCloud API
	FileCloud API - "Hello World" Exercise
	7.1 COMMAND: LOGINGUEST
	7.2 COMMAND: ADMINLOGIN

	FileCloud API - Authentication Exercise
	FileCloud API - Logging Exercise
	FileCloud API - Requirements
	Meet the Requirements

	FileCloud API - XML Responses

